
CloudQAtest
Berita > New category 16 > Test_Img

Test_Img
2022-08-31 - Agent007 RAW - Comments (0) - New category 16

PDFKit Guide By Devon Govett Version 0.11.0 Getting Started with PDFKit Installation
Installation uses the npm package manager. Just type the following command after
installing npm. npm install pdfkit Creating a document Creating a PDFKit document is quite
simple. Just require the pdfkit module in your JavaScript source file and create an instance
of the PDFDocument class. const PDFDocument = require('pdfkit'); const doc = new
PDFDocument; PDFDocument instances are readable Node streams. They don't get saved
anywhere automatically, but you can call the pipe method to send the output of the PDF
document to another writable Node stream as it is being written. When you're done with
your document, call the end method to finalize it. Here is an example showing how to pipe
to a file or an HTTP response. doc.pipe(fs.createWriteStream('/path/to/file.pdf')); // write to
PDF doc.pipe(res); // HTTP response // add stuff to PDF here using methods described
below... // finalize the PDF and end the stream doc.end(); The write and output methods
found in PDFKit before version 0.5 are now deprecated. Using PDFKit in the browser PDFKit
can be used in the browser as well as in Node! There are two ways to use PDFKit in the
browser. The first is to create an app using an module bundler like Browserify or Webpack.
The second is to create a standalone pdfkit script as explained here. Using PDFKit in the
browser is exactly the same as using it in Node, except you'll want to pipe the output to a
destination supported in the browser, such as a Blob. Blobs can be used to generate a URL
to allow display of generated PDFs directly in the browser via an iframe, or they can be used
to upload the PDF to a server, or trigger a download in the user's browser. To get a Blob
from a PDFDocument, you should pipe it to a blob-stream, which is a module that generates
a Blob from any Node-style stream. The following example uses Browserify to load PDFKit
and blob-stream, but if you're not using Browserify, you can load them in whatever way
you'd like (e.g. script tags). // require dependencies const PDFDocument = require('pdfkit');
const blobStream = require('blob-stream'); // create a document the same way as above
const doc = new PDFDocument; // pipe the document to a blob const stream =
doc.pipe(blobStream()); // add your content to the document here, as usual // get a blob
when you're done doc.end(); stream.on('finish', function() { // get a blob you can do
whatever you like with const blob = stream.toBlob('application/pdf'); // or get a blob URL for
display in the browser const url = stream.toBlobURL('application/pdf'); iframe.src = url; });
You can see an interactive in-browser demo of PDFKit here. Note that in order to Browserify
a project using PDFKit, you need to install the brfs module with npm, which is used to load
built-in font data into the package. It is listed as a devDependencies in PDFKit's
package.json, so it isn't installed by default for Node users. If you forget to install it,
Browserify will print an error message. Adding pages The first page of a PDFKit document is

https://cloudqatest1111.deskpro.com/id/news
https://cloudqatest1111.deskpro.com/id/news/new-category-16
https://cloudqatest1111.deskpro.com/id/news/posts/test-img
https://cloudqatest1111.deskpro.com/id/news/new-category-16

added for you automatically when you create the document unless you provide
autoFirstPage: false. Subsequent pages must be added by you. Luckily, it is quite simple!
doc.addPage() To add some content every time a page is created, either by calling
addPage() or automatically, you can use the pageAdded event. doc.on('pageAdded', () =>
doc.text("Page Title")); You can also set some options for the page, such as its size and
orientation. The layout property can be either portrait (the default) or landscape. The size
property can be either an array specifying [width, height] in PDF points (72 per inch), or a
string specifying a predefined size. A list of the predefined paper sizes can be seen here.
The default is letter. Passing a page options object to the PDFDocument constructor will set
the default paper size and layout for every page in the document, which is then overridden
by individual options passed to the addPage method. You can set the page margins in two
ways. The first is by setting the margin property (singular) to a number, which applies that
margin to all edges. The other way is to set the margins property (plural) to an object with
top, bottom, left, and right values. The default is a 1 inch (72 point) margin on all sides. For
example: // Add a 50 point margin on all sides doc.addPage({ margin: 50}); // Add different
margins on each side doc.addPage({ margins: { top: 50, bottom: 50, left: 72, right: 72 } });
Switching to previous pages PDFKit normally flushes pages to the output file immediately
when a new page is created, making it impossible to jump back and add content to previous
pages. This is normally not an issue, but in some circumstances it can be useful to add
content to pages after the whole document, or a part of the document, has been created
already. Examples include adding page numbers, or filling in other parts of information you
don't have until the rest of the document has been created. PDFKit has a bufferPages option
in versions v0.7.0 and later that allows you to control when pages are flushed to the output
file yourself rather than letting PDFKit handle that for you. To use it, just pass bufferPages:
true as an option to the PDFDocument constructor. Then, you can call
doc.switchToPage(pageNumber) to switch to a previous page (page numbers start at 0).
When you're ready to flush the buffered pages to the output file, call flushPages. This
method is automatically called by doc.end(), so if you just want to buffer all pages in the
document, you never need to call it. Finally, there is a bufferedPageRange method, which
returns the range of pages that are currently buffered. Here is a small example that shows
how you might add page numbers to a document. // create a document, and enable
bufferPages mode let i; let end; const doc = new PDFDocument({ bufferPages: true}); //
add some content... doc.addPage(); // ... doc.addPage(); // see the range of buffered pages
const range = doc.bufferedPageRange(); // => { start: 0, count: 2 } for (i = range.start, end
= range.start + range.count, range.start <= end; i < end; i+ +;) { doc.switchToPage(i);
doc.text(`Page ${i + 1} of ${range.count}`); } // manually flush pages that have been
buffered doc.flushPages(); // or, if you are at the end of the document anyway, // doc.end()
will call it for you automatically. doc.end(); Setting default font The default font is
'Helvetica'. It can be configured by passing font option // use Courier font by default const
doc = new PDFDocument({font: 'Courier'}); Setting document metadata PDF documents
can have various metadata associated with them, such as the title, or author of the
document. You can add that information by adding it to the doc.info object, or by passing
an info object into the document at creation time. Here is a list of all of the properties you

can add to the document metadata. According to the PDF spec, each property must have its
first letter capitalized. Title - the title of the document Author - the name of the author
Subject - the subject of the document Keywords - keywords associated with the document
CreationDate - the date the document was created (added automatically by PDFKit)
ModDate - the date the document was last modified Encryption and Access Privileges PDF
specification allow you to encrypt the PDF file and require a password when opening the
file, and/or set permissions of what users can do with the PDF file. PDFKit implements
standard security handler in PDF version 1.3 (40-bit RC4), version 1.4 (128-bit RC4), PDF
version 1.7 (128-bit AES), and PDF version 1.7 ExtensionLevel 3 (256-bit AES). To enable
encryption, provide a user password when creating the PDFDocument in options object. The
PDF file will be encrypted when a user password is provided, and users will be prompted to
enter the password to decrypt the file when opening it. userPassword - the user password
(string value) To set access privileges for the PDF file, you need to provide an owner
password and permission settings in the option object when creating PDFDocument. By
default, all operations are disallowed. You need to explicitly allow certain operations.
ownerPassword - the owner password (string value) permissions - the object specifying PDF
file permissions Following settings are allowed in permissions object: printing - whether
printing is allowed. Specify "lowResolution" to allow degraded printing, or "highResolution"
to allow printing with high resolution modifying - whether modifying the file is allowed.
Specify true to allow modifying document content copying - whether copying text or
graphics is allowed. Specify true to allow copying annotating - whether annotating, form
filling is allowed. Specify true to allow annotating and form filling fillingForms - whether
form filling and signing is allowed. Specify true to allow filling in form fields and signing
contentAccessibility - whether copying text for accessibility is allowed. Specify true to allow
copying for accessibility documentAssembly - whether assembling document is allowed.
Specify true to allow document assembly You can specify either user password, owner
password or both passwords. Behavior differs according to passwords you provides: When
only user password is provided, users with user password are able to decrypt the file and
have full access to the document. When only owner password is provided, users are able to
decrypt and open the document without providing any password, but the access is limited
to those operations explicitly permitted. Users with owner password have full access to the
document. When both passwords are provided, users with user password are able to
decrypt the file but only have limited access to the file according to permission settings.
Users with owner password have full access to the document. Note that PDF file itself
cannot enforce access privileges. When file is decrypted, PDF viewer applications have full
access to the file content, and it is up to viewer applications to respect permission settings.
To choose encryption method, you need to specify PDF version. PDFKit will choose best
encryption method available in the PDF version you specified. pdfVersion - a string value
specifying PDF file version Available options includes: 1.3 - PDF version 1.3 (default), 40-bit
RC4 is used 1.4 - PDF version 1.4, 128-bit RC4 is used 1.5 - PDF version 1.5, 128-bit RC4 is
used 1.6 - PDF version 1.6, 128-bit AES is used 1.7 - PDF version 1.7, 128-bit AES is used
1.7ext3 - PDF version 1.7 ExtensionLevel 3, 256-bit AES is used When using PDF version 1.7
ExtensionLevel 3, password is truncated to 127 bytes of its UTF-8 representation. In older

versions, password is truncated to 32 bytes, and only Latin-1 characters are allowed.
Adding content Once you've created a PDFDocument instance, you can add content to the
document. Check out the other sections described in this document to learn about each
type of content you can add. That's the basics! Now let's move on to PDFKit's powerful
vector graphics abilities. Paper Sizes When creating a new document or adding a new page
to your current document, PDFKit allows you to set the page dimensions. To improve
convenience, PDFKit has a number of predefined page sizes. These sizes are based on the
most commonly used stndard page sizes. Predefned Page Sizes The following predefined
sizes are based on the ISO (International) standards. All the dimensions in brackets are in
PostScript points. A-series A0 (2383.94 x 3370.39) A1 (1683.78 x 2383.94) A2 (1190.55 x
1683.78) A3 (841.89 x 1190.55) A4 (595.28 x 841.89) A5 (419.53 x 595.28) A6 (297.64 x
419.53) A7 (209.76 x 297.64) A8 (147.40 x 209.76) A9 (104.88 x 147.40) A10 (73.70 x
104.88) B-series B0 (2834.65 x 4008.19) B1 (2004.09 x 2834.65) B2 (1417.32 x 2004.09)
B3 (1000.63 x 1417.32) B4 (708.66 x 1000.63) B5 (498.90 x 708.66) B6 (354.33 x 498.90)
B7 (249.45 x 354.33) B8 (175.75 x 249.45) B9 (124.72 x 175.75) B10 (87.87 x 124.72) C-
series C0 (2599.37 x 3676.54) C1 (1836.85 x 2599.37) C2 (1298.27 x 1836.85) C3 (918.43 x
1298.27) C4 (649.13 x 918.43) C5 (459.21 x 649.13) C6 (323.15 x 459.21) C7 (229.61 x
323.15) C8 (161.57 x 229.61) C9 (113.39 x 161.57) C10 (79.37 x 113.39) RA-series RA0
(2437.80 x 3458.27) RA1 (1729.13 x 2437.80) RA2 (1218.90 x 1729.13) RA3 (864.57 x
1218.90) RA4 (609.45 x 864.57) SRA-series SRA0 (2551.18 x 3628.35) SRA1 (1814.17 x
2551.18) SRA2 (1275.59 x 1814.17) SRA3 (907.09 x 1275.59) SRA4 (637.80 x 907.09) The
following predefined sizes are based on the common paper sizes used mainly in the United
States of America and Canada. The dimensions in brackets are in PostScript points.
EXECUTIVE (521.86 x 756.00) LEGAL (612.00 x 1008.00) LETTER (612.00 X 792.00)
TABLOID (792.00 X 1224.00) PDFKit supports also the following paper sizes. The dimensions
in brackets are in PostScript points. 4A0 (4767.89 x 6740.79) 2A0 (3370.39 x 4767.87)
FOLIO (612.00 X 936.00) Setting the page size In order to use the predefined sizes, the
name of the size (as named in the lists above) should be passed to either the PDFDocument
constructor or the addPage() function in the size property of the options object, as shown in
the example below, using A7 as the preferred size. // Passing size to the constructor const
doc = new PDFDocument({size: 'A7'}); // Passing size to the addPage function
doc.addPage({size: 'A7'}); Vector Graphics in PDFKit An introduction to vector graphics
Unlike images which are defined by pixels, vector graphics are defined through a series of
drawing commands. This makes vector graphics scalable to any size without a reduction in
quality (pixelization). The PDF format was designed with vector graphics in mind, so
creating vector drawings is very easy. The PDFKit vector graphics APIs are very similar to
that of the HTML5 canvas element, so if you are familiar at all with that API, you will find
PDFKit easy to pick up. Creating basic shapes Shapes are defined by a series of lines and
curves. lineTo, bezierCurveTo and quadraticCurveTo all draw from the current point (which
you can set with moveTo) to the specified point (always the last two arguments). Bezier
curves use two control points and quadratic curves use just one. Here is an example that
illustrates defining a path. doc.moveTo(0, 20) // set the current point .lineTo(100, 160) //
draw a line .quadraticCurveTo(130, 200, 150, 120) // draw a quadratic curve

.bezierCurveTo(190, -40, 200, 200, 300, 150) // draw a bezier curve .lineTo(400, 90) // draw
another line .stroke(); // stroke the path The output of this example looks like this: One thing
to notice about this example is the use of method chaining. All methods in PDFKit are
chainable, meaning that you can call one method right after the other without referencing
the doc variable again. Of course, this is an option, so if you don't like how the code looks
when chained, you don't have to write it that way. SVG paths PDFKit includes an SVG path
parser, so you can include paths written in the SVG path syntax in your PDF documents.
This makes it simple to include vector graphics elements produced in many popular editors
such as Inkscape or Adobe Illustrator. The previous example could also be written using the
SVG path syntax like this. doc.path('M 0,20 L 100,160 Q 130,200 150,120 C 190,-40
200,200 300,150 L 400,90') .stroke() The PDFKit SVG parser supports all of the command
types supported by SVG, so any valid SVG path you throw at it should work as expected.
Shape helpers PDFKit also includes some helpers that make defining common shapes much
easier. Here is a list of the helpers. rect(x, y, width, height) roundedRect(x, y, width, height,
cornerRadius) ellipse(centerX, centerY, radiusX, radiusY = radiusX) circle(centerX, centerY,
radius) polygon(points...) The last one, polygon, allows you to pass in a list of points (arrays
of x,y pairs), and it will create the shape by moving to the first point, and then drawing lines
to each consecutive point. Here is how you'd draw a triangle with the polygon helper.
doc.polygon([100, 0], [50, 100], [150, 100]); doc.stroke(); The output of this example looks
like this: Fill and stroke styles So far we have only been stroking our paths, but you can also
fill them with the fill method, and both fill and stroke the same path with the fillAndStroke
method. Note that calling fill and then stroke consecutively will not work because of a
limitation in the PDF spec. Use the fillAndStroke method if you want to accomplish both
operations on the same path. In order to make our drawings interesting, we really need to
give them some style. PDFKit has many methods designed to do just that. lineWidth lineCap
lineJoin miterLimit dash fillColor strokeColor opacity fillOpacity strokeOpacity Some of these
are pretty self explanatory, but let's go through a few of them. Line cap and line join The
lineCap and lineJoin properties accept constants describing what they should do. This is
best illustrated by an example. // these examples are easier to see with a large line width
doc.lineWidth(25); // line cap settings doc.lineCap('butt') .moveTo(50, 20) .lineTo(100, 20)
.stroke(); doc.lineCap('round') .moveTo(150, 20) .lineTo(200, 20) .stroke(); // square line cap
shown with a circle instead of a line so you can see it doc.lineCap('square') .moveTo(250,
20) .circle(275, 30, 15) .stroke(); // line join settings doc.lineJoin('miter') .rect(50, 100, 50,
50) .stroke(); doc.lineJoin('round') .rect(150, 100, 50, 50) .stroke(); doc.lineJoin('bevel')
.rect(250, 100, 50, 50) .stroke(); The output of this example looks like this. Dashed lines The
dash method allows you to create non-continuous dashed lines. It takes a length specifying
how long each dash should be, as well as an optional hash describing the additional
properties space and phase. Lengths must be positive numbers; dash will throw if passed
invalid lengths. The space option defines the length of the space between each dash, and
the phase option defines the starting point of the sequence of dashes. By default the space
attribute is equal to the length and the phase attribute is set to 0. You can use the undash
method to make the line solid again. The following example draws a circle with a dashed
line where the space between the dashes is double the length of each dash. doc.circle(100,

50, 50) .dash(5, {space: 10}) .stroke(); The output of this example looks like this: Color
What is a drawing without color? PDFKit makes it simple to set the fill and stroke color and
opacity. You can pass an array specifying an RGB or CMYK color, a hex color string, or use
any of the named CSS colors. The fillColor and strokeColor methods accept an optional
second argument as a shortcut for setting the fillOpacity and strokeOpacity. Finally, the
opacity method is a convenience method that sets both the fill and stroke opacity to the
same value. The fill and stroke methods also accept a color as an argument so that you
don't have to call fillColor or strokeColor beforehand. The fillAndStroke method accepts both
fill and stroke colors as arguments. doc.circle(100, 50, 50) .lineWidth(3) .fillOpacity(0.8)
.fillAndStroke("red", "#900") This example produces the following output: Gradients PDFKit
also supports gradient fills. Gradients can be used just like color fills, and are applied with
the same methods (e.g. fillColor, or just fill). Before you can apply a gradient with these
methods, however, you must create a gradient object. There are two types of gradients:
linear and radial. They are created by the linearGradient and radialGradient methods. Their
function signatures are listed below: linearGradient(x1, y1, x2, y2) - x1,y1 is the start point,
x2,y2 is the end point radialGradient(x1, y1, r1, x2, y2, r2) - r1 is the inner radius, r2 is the
outer radius Once you have a gradient object, you need to create color stops at points along
that gradient. Stops are defined at percentage values (0 to 1), and take a color value (any
usable by the fillColor method), and an optional opacity. You can see both linear and radial
gradients in the following example: // Create a linear gradient let grad =
doc.linearGradient(50, 0, 150, 100); grad.stop(0, 'green') .stop(1, 'red'); doc.rect(50, 0, 100,
100); doc.fill(grad); // Create a radial gradient grad = doc.radialGradient(300, 50, 0, 300,
50, 50); grad.stop(0, 'orange', 0) .stop(1, 'orange', 1); doc.circle(300, 50, 50); doc.fill(grad);
Here is the output from the this example: Winding rules Winding rules define how a path is
filled and are best illustrated by an example. The winding rule is an optional attribute to the
fill and fillAndStroke methods, and there are two values to choose from: non-zero and even-
odd. // Initial setup doc.fillColor('red') .translate(-100, -50) .scale(0.8); // Draw the path with
the non-zero winding rule doc.path('M 250,75 L 323,301 131,161 369,161 177,301 z')
.fill('non-zero'); // Draw the path with the even-odd winding rule doc.translate(280, 0)
.path('M 250,75 L 323,301 131,161 369,161 177,301 z') .fill('even-odd'); You'll notice that I
used the scale and translate transformations in this example. We'll cover those in a minute.
The output of this example, with some added labels, is below. Saving and restoring the
graphics stack Once you start producing more complex vector drawings, you will want to be
able to save and restore the state of the graphics context. The graphics state is basically a
snapshot of all the styles and transformations (see below) that have been applied, and
many states can be created and stored on a stack. Every time the save method is called,
the current graphics state is pushed onto the stack, and when you call restore, the last
state on the stack is applied to the context again. This way, you can save the state, change
some styles, and then restore it to how it was before you made those changes.
Transformations Transformations allow you to modify the look of a drawing without
modifying the drawing itself. There are three types of transformations available, as well as a
method for setting the transformation matrix yourself. They are translate, rotate and scale.
The translate transformation takes two arguments, x and y, and effectively moves the origin

of the page which is (0, 0) by default, to the left and right x and y units. The rotate
transformation takes an angle and optionally, an object with an origin property. It rotates
the document angle degrees around the passed origin or by default, around the origin (top
left corner) of the page. The scale transformation takes a scale factor and an optional origin
passed in an options hash as with the rotate transformation. It is used to increase or
decrease the size of the units in the drawing, or change its size. For example, applying a
scale of 0.5 would make the drawing appear at half size, and a scale of 2 would make it
appear twice as large. If you are feeling particularly smart, you can modify the
transformation matrix yourself using the transform method. We used the scale and
translate transformations above, so here is an example of using the rotate transformation.
We'll set the origin of the rotation to the center of the rectangle. doc.rotate(20, {origin:
[150, 70]}) .rect(100, 20, 100, 100) .fill('gray'); This example produces the following effect.
Clipping A clipping path is a path defined using the normal path creation methods, but
instead of being filled or stroked, it becomes a mask that hides unwanted parts of the
drawing. Everything falling inside the clipping path after it is created is visible, and
everything outside the path is invisible. Here is an example that clips a checkerboard
pattern to the shape of a circle. // Create a clipping path doc.circle(100, 100, 100) .clip(); //
Draw a checkerboard pattern for (let row = 0; row < 10; row++) { for (let col = 0; col < 10;
col++) { const color = (col % 2) - (row % 2) ? '#eee' : '#4183C4'; doc.rect(row * 20, col *
20, 20, 20) .fill(color); } } The result of this example is the following: If you want to "unclip",
you can use the save method before the clipping, and then use restore to retrieve access to
the whole page. That's it for vector graphics in PDFKit. Now let's move on to learning about
PDFKit's text support! Text in PDFKit The basics PDFKit makes adding text to documents
quite simple, and includes many options to customize the display of the output. Adding text
to a document is as simple as calling the text method. doc.text('Hello world!') Internally,
PDFKit keeps track of the current X and Y position of text as it is added to the document.
This way, subsequent calls to the text method will automatically appear as new lines below
the previous line. However, you can modify the position of text by passing X and Y
coordinates to the text method after the text itself. doc.text('Hello world!', 100, 100) If you
want to move down or up by lines, just call the moveDown or moveUp method with the
number of lines you'd like to move (1 by default). Line wrapping and justifcation PDFKit
includes support for line wrapping out of the box! If no options are given, text is
automatically wrapped within the page margins and placed in the document flow below any
previous text, or at the top of the page. PDFKit automatically inserts new pages as
necessary so you don't have to worry about doing that for long pieces of text. PDFKit can
also automatically wrap text into multiple columns. The text will automatically wrap unless
you set the lineBreak option to false. By default it will wrap to the page margin, but the
width option allows you to set a different width the text should be wrapped to. If you set the
height option, the text will be clipped to the number of lines that can fit in that height.
When line wrapping is enabled, you can choose a text justification. There are four options:
left (the default), center, right, and justify. They work just as they do in your favorite word
processor, but here is an example showing their use in a text box. const lorem = 'Lorem
ipsum dolor sit amet, consectetur adipiscing elit. Etiam in suscipit purus. Vestibulum ante

ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Vivamus nec hendrerit
felis. Morbi aliquam facilisis risus eu lacinia. Sed eu leo in turpis fringilla hendrerit. Ut nec
accumsan nisl.'; doc.fontSize(8); doc.text(`This text is left aligned. ${lorem}`, { width: 410,
align: 'left' }); doc.moveDown(); doc.text(`This text is centered. ${lorem}`, { width: 410,
align: 'center' }); doc.moveDown(); doc.text(`This text is right aligned. ${lorem}`, { width:
410, align: 'right' }); doc.moveDown(); doc.text(`This text is justified. ${lorem}`, { width:
410, align: 'justify' }); // draw bounding rectangle doc.rect(doc.x, 0, 410, doc.y).stroke();
The output of this example, looks like this: This text is left aligned. Lorem ipsum dolor sit
amet, consectetur adipiscing elit. Etiam in suscipit purus. Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere cubilia Curae; Vivamus nec hendrerit felis. Morbi
aliquam facilisis risus eu lacinia. Sed eu leo in turpis fringilla hendrerit. Ut nec accumsan
nisl. This text is centered. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam in
suscipit purus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere
cubilia Curae; Vivamus nec hendrerit felis. Morbi aliquam facilisis risus eu lacinia. Sed eu leo
in turpis fringilla hendrerit. Ut nec accumsan nisl. This text is right aligned. Lorem ipsum
dolor sit amet, consectetur adipiscing elit. Etiam in suscipit purus. Vestibulum ante ipsum
primis in faucibus orci luctus et ultrices posuere cubilia Curae; Vivamus nec hendrerit felis.
Morbi aliquam facilisis risus eu lacinia. Sed eu leo in turpis fringilla hendrerit. Ut nec
accumsan nisl. This text is justified. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Etiam in suscipit purus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Vivamus nec hendrerit felis. Morbi aliquam facilisis risus eu lacinia.
Sed eu leo in turpis fringilla hendrerit. Ut nec accumsan nisl. Text styling PDFKit has many
options for controlling the look of text added to PDF documents, which can be passed to the
text method. They are enumerated below. lineBreak - set to false to disable line wrapping
all together width - the width that text should be wrapped to (by default, the page width
minus the left and right margin) height - the maximum height that text should be clipped to
ellipsis - the character to display at the end of the text when it is too long. Set to true to use
the default character. columns - the number of columns to flow the text into columnGap -
the amount of space between each column (1/4 inch by default) indent - the amount in PDF
points (72 per inch) to indent each paragraph of text paragraphGap - the amount of space
between each paragraph of text lineGap - the amount of space between each line of text
wordSpacing - the amount of space between each word in the text characterSpacing - the
amount of space between each character in the text fill - whether to fill the text (true by
default) stroke - whether to stroke the text link - a URL to link this text to (shortcut to create
an annotation) goTo - go to anchor (shortcut to create an annotation) destination - create
anchor to this text underline - whether to underline the text strike - whether to strike out
the text oblique - whether to slant the text (angle in degrees or true) baseline - the vertical
alignment of the text with respect to its insertion point (values as canvas textBaseline)
continued - whether the text segment will be followed immediately by another segment.
Useful for changing styling in the middle of a paragraph. features - an array of OpenType
feature tags to apply. If not provided, a set of defaults is used. Additionally, the fill and
stroke color and opacity methods described in the vector graphics section are applied to
text content as well. Here is an example combining some of the options above, wrapping a

piece of text into three columns, in a specified width and height. const lorem = 'Lorem
ipsum dolor sit amet, consectetur adipiscing elit. Etiam in suscipit purus. Vestibulum ante
ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Vivamus nec hendrerit
felis. Morbi aliquam facilisis risus eu lacinia. Sed eu leo in turpis fringilla hendrerit. Ut nec
accumsan nisl. Suspendisse rhoncus nisl posuere tortor tempus et dapibus elit porta. Cras
leo neque, elementum a rhoncus ut, vestibulum non nibh. Phasellus pretium justo turpis.
Etiam vulputate, odio vitae tincidunt ultricies, eros odio dapibus nisi, ut tincidunt lacus arcu
eu elit. Aenean velit erat, vehicula eget lacinia ut, dignissim non tellus. Aliquam nec lacus
mi, sed vestibulum nunc. Suspendisse potenti. Curabitur vitae sem turpis. Vestibulum sed
neque eget dolor dapibus porttitor at sit amet sem. Fusce a turpis lorem. Vestibulum ante
ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;'; doc.text(lorem, {
columns: 3, columnGap: 15, height: 100, width: 465, align: 'justify' }); The output looks like
this: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam in suscipit purus.
Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;
Vivamus nec hendrerit felis. Morbi aliquam facilisis risus eu lacinia. Sed eu leo in turpis
fringilla hendrerit. Ut nec accumsan nisl. Suspendisse rhoncus nisl posuere tortor tempus et
dapibus elit porta. Cras leo neque, elementum a rhoncus ut, vestibulum non nibh. Phasellus
pretium justo turpis. Etiam vulputate, odio vitae tincidunt ultricies, eros odio dapibus nisi, ut
tincidunt lacus arcu eu elit. Aenean velit erat, vehicula eget lacinia ut, dignissim non tellus.
Aliquam nec lacus mi, sed vestibulum nunc. Suspendisse potenti. Curabitur vitae sem
turpis. Vestibulum sed neque eget dolor dapibus porttitor at sit amet sem. Fusce a turpis
lorem. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia
Curae; Text measurements If you're working with documents that require precise layout,
you may need to know the size of a piece of text. PDFKit has two methods to achieve this:
widthOfString(text, options) and heightOfString(text, options). Both methods use the same
options described in the Text styling section, and take into account the eventual line
wrapping. Lists The list method creates a bulleted list. It accepts as arguments an array of
strings, and the optional x, y position. You can create complex multilevel lists by using
nested arrays. Lists use the following additional options: bulletRadius textIndent
bulletIndent Rich Text As mentioned above, PDFKit supports a simple form of rich text via
the continued option. When set to true, PDFKit will retain the text wrapping state between
text calls. This way, when you call text again after changing the text styles, the wrapping
will continue right where it left off. The options given to the first text call are also retained
for subsequent calls after a continued one, but of course you can override them. In the
following example, the width option from the first text call is retained by the second call.
doc.fillColor('green') .text(lorem.slice(0, 500), { width: 465, continued: true }).fillColor('red')
.text(lorem.slice(500)); Here is the output: Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Etiam in suscipit purus. Vestibulum ante ipsum primis in faucibus orci luctus
et ultrices posuere cubilia Curae; Vivamus nec hendrerit felis. Morbi aliquam facilisis risus
eu lacinia. Sed eu leo in turpis fringilla hendrerit. Ut nec accumsan nisl. Suspendisse
rhoncus nisl posuere tortor tempus et dapibus elit porta. Cras leo neque, elementum a
rhoncus ut, vestibulum non nibh. Phasellus pretium justo turpis. Etiam vulputate, odio vitae
tincidunt ultricies, eros odio dapibus nisi, ut tincidunt lacus arcu eu elit. Aenean velit erat,

vehicula eget lacinia ut, dignissim non tellus. Aliquam nec lacus mi, sed vestibulum nunc.
Suspendisse potenti. Curabitur vitae sem turpis. Vestibulum sed neque eget dolor dapibus
porttitor at sit amet sem. Fusce a turpis lorem. Vestibulum ante ipsum primis in faucibus
orci luctus et ultrices posuere cubilia Curae; To cancel a link in rich text set the link option
to null. doc.fillColor('red') .text(lorem.slice(0, 199), { width: 465, continued: true })
.fillColor('blue') .text(lorem.slice(199, 282), { link: 'http://www.example.com', continued:
true }) .fillColor('green') .text(lorem.slice(182, 400), { link: null }); Here is the output:
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam in suscipit purus. Vestibulum
ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Vivamus nec
hendrerit felis. Morbi aliquam facilisis risus eu lacinia. Sed eu leo in turpis fringilla
hendrerit.hendrerit felis. Morbi aliquam facilisis risus eu lacinia. Sed eu leo in turpis fringilla
hendrerit. Ut nec accumsan nisl. Suspendisse rhoncus nisl posuere tortor tempus et dapibus
elit porta. Cras leo neque, elementum Fonts The PDF format defines 14 standard fonts that
can be used in PDF documents. PDFKit supports each of them out of the box. Besides
Symbol and Zapf Dingbats this includes 4 styles (regular, bold, italic/oblique, bold+italic) of
Helvetica, Courier, and Times. To switch between standard fonts, call the font method with
the corresponding Label: 'Courier' 'Courier-Bold' 'Courier-Oblique' 'Courier-BoldOblique'
'Helvetica' 'Helvetica-Bold' 'Helvetica-Oblique' 'Helvetica-BoldOblique' 'Symbol' 'Times-
Roman' 'Times-Bold' 'Times-Italic' 'Times-BoldItalic' 'ZapfDingbats' The PDF format also
allows fonts to be embedded right in the document. PDFKit supports embedding TrueType
(.ttf), OpenType (.otf), WOFF, WOFF2, TrueType Collection (.ttc), and Datafork TrueType
(.dfont) fonts. To change the font used to render text, just call the font method. If you are
using a standard PDF font, just pass the name to the font method. Otherwise, pass the path
to the font file, or a Buffer containing the font data. If the font is a collection font (.ttc and
.dfont files), meaning that it contains multiple styles in the same file, you should pass the
name of the style to be extracted from the collection. Here is an example showing how to
set the font in each case. // Set the font size doc.fontSize(18); // Using a standard PDF font
doc.font('Times-Roman') .text('Hello from Times Roman!') .moveDown(0.5); // Using a
TrueType font (.ttf) doc.font('fonts/GoodDog.ttf') .text('This is Good Dog!') .moveDown(0.5);
// Using a collection font (.ttc or .dfont) doc.font('fonts/Chalkboard.ttc', 'Chalkboard-Bold')
.text('This is Chalkboard, not Comic Sans.'); The output of this example looks like this: Hello
from Times Roman! This is Good Dog! This is Chalkboard, not Comic Sans. Another nice
feature of the PDFKit font support, is the ability to register a font file under a name for use
later rather than entering the path to the font every time you want to use it. // Register a
font doc.registerFont('Heading Font', 'fonts/Chalkboard.ttc', 'Chalkboard-Bold'); // Use the
font later doc.font('Heading Font') .text('This is a heading.'); That's about all there is too it
for text in PDFKit. Let's move on now to images. Images in PDFKit Adding images to PDFKit
documents is an easy task. Just pass an image path, buffer, or data uri with base64
encoded data to the image method along with some optional arguments. PDFKit supports
the JPEG and PNG formats. If an X and Y position are not provided, the image is rendered at
the current point in the text flow (below the last line of text). Otherwise, it is positioned
absolutely at the specified point. The image will be scaled according to the following
options. Neither width or height provided - image is rendered at full size width provided but

not height - image is scaled proportionally to fit in the provided width height provided but
not width - image is scaled proportionally to fit in the provided height Both width and height
provided - image is stretched to the dimensions provided scale factor provided - image is
scaled proportionally by the provided scale factor fit array provided - image is scaled
proportionally to fit within the passed width and height cover array provided - image is
scaled proportionally to completely cover the rectangle defined by the passed width and
height link - a URL to link this image to (shortcut to create an annotation) goTo - go to
anchor (shortcut to create an annotation) destination - create anchor to this image When a
fit or cover array is provided, PDFKit accepts these additional options: align - horizontally
align the image, the possible values are 'left', 'center' and 'right' valign - vertically align the
image, the possible values are 'top', 'center' and 'bottom' Here is an example showing some
of these options. // Scale proprotionally to the specified width doc.image('images/test.jpeg',
0, 15, {width: 300}) .text('Proportional to width', 0, 0); // Fit the image within the
dimensions doc.image('images/test.jpeg', 320, 15, {fit: [100, 100]}) .rect(320, 15, 100,
100) .stroke() .text('Fit', 320, 0); // Stretch the image doc.image('images/test.jpeg', 320,
145, {width: 200, height: 100}) .text('Stretch', 320, 130); // Scale the image
doc.image('images/test.jpeg', 320, 280, {scale: 0.25}) .text('Scale', 320, 265); // Fit the
image in the dimensions, and center it both horizontally and vertically
doc.image('images/test.jpeg', 430, 15, {fit: [100, 100], align: 'center', valign: 'center'})
.rect(430, 15, 100, 100).stroke() .text('Centered', 430, 0); This example produces the
following output: Proportional to width Fit Stretch Scale Centered That is all there is to
adding images to your PDF documents with PDFKit. Now let's look at adding outlines.
Outlines in PDFKit Outlines are the heirachical bookmarks that display in some PDF readers.
Currently only page bookmarks are supported, but more may be added in the future. They
are simple to add and only require a single method: addItem(title, options) Here is an
example of adding a bookmark with a single child bookmark. // Get a reference to the
Outline root const { outline } = doc; // Add a top-level bookmark const top =
outline.addItem('Top Level'); // Add a sub-section top.addItem('Sub-section'); Options The
options parameter currently only has one property: expanded. If this value is set to true
then all of that section's children will be visible by default. This value defaults to false. In
this example the 'Top Level' section will be expanded to show 'Sub-section'. // Add a top-
level bookmark const top = outline.addItem('Top Level', { expanded: true }); // Add a sub-
section top.addItem('Sub-section'); Annotations in PDFKit Annotations are interactive
features of the PDF format, and they make it possible to include things like links and
attached notes, or to highlight, underline or strikeout portions of text. Annotations are
added using the various helper methods, and each type of annotation is defined by a
rectangle and some other properties. Here is a list of the available annotation methods:
note(x, y, width, height, contents, options) link(x, y, width, height, url, options) goTo(x, y, w,
h, name, options) highlight(x, y, width, height, options) underline(x, y, width, height,
options) strike(x, y, width, height, options) lineAnnotation(x1, y1, x2, y2, options)
rectAnnotation(x, y, width, height, options) ellipseAnnotation(x, y, width, height, options)
textAnnotation(x, y, width, height, text, options) fileAnnotation(x, y, width, height, file,
options) Many of the annotations have a color option that you can specify. You can use an

array of RGB values, a hex color, or a named CSS color value for that option. If you are
adding an annotation to a piece of text, such as a link or underline, you will need to know
the width and height of the text in order to create the required rectangle for the annotation.
There are two methods that you can use to do that. To get the width of any piece of text in
the current font, just call the widthOfString method with the string you want to measure. To
get the line height in the current font, just call the currentLineHeight method. You must
remember that annotations have a stacking order. If you are putting more than one
annotation on a single area and one of those annotations is a link, make sure that the link is
the last one you add, otherwise it will be covered by another annotation and the user won't
be able to click it. Here is an example that uses a few of the annotation types. // Add the
link text doc.fontSize(25) .fillColor('blue') .text('This is a link!', 20, 0); // Measure the text
const width = doc.widthOfString('This is a link!'); const height = doc.currentLineHeight(); //
Add the underline and link annotations doc.underline(20, 0, width, height, {color: 'blue'})
.link(20, 0, width, height, 'http://google.com/'); // Create the highlighted text
doc.moveDown() .fillColor('black') .highlight(20, doc.y, doc.widthOfString('This text is
highlighted!'), height) .text('This text is highlighted!'); // Create the crossed out text
doc.moveDown() .strike(20, doc.y, doc.widthOfString('STRIKE!'), height) .text('STRIKE!'); //
Adding go to as annotation doc.goTo(20, doc.y, 10, 20, 'LINK', {}); The output of this
example looks like this. This is a link! This text is highlighted! STRIKE! Annotations are
currently not the easiest things to add to PDF documents, but that is the fault of the PDF
spec itself. Calculating a rectangle manually isn't fun, but PDFKit makes it easier for a few
common annotations applied to text, including links, underlines, and strikes. Here's an
example showing two of them: doc.fontSize(20) .fillColor('red') .text('Another link!', 20, 0, {
link: 'http://apple.com/', underline: true }); The output is as you'd expect: Another link!
Forms in PDFKit Forms are an interactive feature of the PDF format. Forms make it possible
to add form annotations such as text fields, combo boxes, buttons and actions. Before
addings forms to a PDF you must call the document initForm() method. initForm() - Must be
called before adding a form annotation to the document. javascript doc.font('Helvetica'); //
establishes the default form field font doc.initForm(); Form Annotation Methods Form
annotations are added using the following document methods. formText(name, x, y, width,
height, options) formPushButton(name, x, y, width, height, name, options) formCombo(
name, x, y, width, height, options) formList(name, x, y, width, height, options) The above
methods call the formAnnotation method with type set to one of text, pushButton,
radioButton, combo or list. formAnnotation(name, type, x, y, width, height, options) name
Parameter Form annotations are each given a name that is used for identification. Field
names are hierarchical using a period ('.') as a separaror (e.g. shipping.address.street).
More than one form field can have the same name. When this happens, the fields will have
the same value. There is more information on name in the Field Names section below.
options Parameter Common Options Form Annotation options that are common across all
form annotation types are: required [boolean] - The field must have a value by the time the
form is submitted. noExport [boolean] - The field will not be exported if a form is submitted.
readOnly [boolean] - The user may not change the value of the field, and the field will not
respond to mouse clicks. This is useful for fields that have computed values. value

[number|string] - The field's value. defaultValue [number|string] - The default value to
which the field reverts if a reset-form action is executed. Some form annotations have color
options. You can use an array of RGB values, a hex color, or a named CSS color value for
that option. backgroundColor - field background color borderColor - field border color Text
Field Options align [string] - Sets the alignment to left, center or right. multiline [boolean] -
Allows the field to have multiple lines of text. password [boolean] - The text will be masked
(e.g. with asterisks). noSpell [boolean] - If set, text entered in the field is not spell-checked
format [object] - See the section on Text Field Formatting below. js doc.formText('leaf2',
10, 60, 200, 40, { multiline: true, align: 'right', format: { type: 'date', params: 'm/d' } });
Combo and List Field Options sort [boolean] - The field options will be sorted alphabetically.
edit [boolean] - (combo only) Allow the user to enter a value in the field. multiSelect
[boolean] - Allow more than one choice to be selected. noSpell [boolean] - (combo only) If
set and edit is true, text entered in the field is not spell�checked. select [array] - Array of
choices to display in the combo or list form field. js opts = { select: ['', 'github', 'bitbucket',
'gitlab'], value: '', defaultValue: '', align: 'left' }; doc.formCombo('ch1', 10, y, 100, 20, opts);
Button Field Options label [string] - Sets the label text. You can also set an icon, but for this
you will need to 'expert-up' and dig deeper into the PDF Reference manual. js var opts = {
backgroundColor: 'yellow', label: 'Test Button' }; doc.formPushButton('btn1', 10, 200, 100,
30, opts); Text Field Formatting When needing to format the text value of a Form
Annotation, the following options are available. This will cause predefined document
JavaScript actions to automatically format the text. Refer to the section Formatting scripts
in Acrobat Forms Plugin of the Acrobat SDK documentation for more information. Add a
format dictionary to options. The dictionary must contain a type attribute. format - generic
object format.type - value must be one of date, time, percent, number, zip, zipPlus4, phone
or ssn. When type is date, time, percent or number the format dictionary must contain
additional parameters as described below. Date format format.param (string) - specifies
the value and display format and can include:d - single digit day of month dd - double digit
day of month m - month digit mm - month double digit mmm - abbreviated month name
mmmm - full month name yy - two digit year yyyy - four digit year hh - hour for 12 hour
clock HH - hour for 24 hour clock MM - two digit minute tt - am or pm js // Date text field
formatting doc.formText('field.date', 10, 60, 200, 40, { align: 'center', format: { type: 'date',
param: 'mmmm d, yyyy' } }); Time format format.param - value must be a number
between 0 and 3, representing the formats "14:30", "2:30 PM", "14:30:15" and "2:30:15
PM". js // Time text field formatting doc.formText('field.time', 10, 60, 200, 40, { align:
'center', format: { type: 'time', param: 2 } }); Number and percent format format.nDec
[number] - the number of places after the decimal point format.sepComma [boolean] -
display a comma separator, otherwise do not display a separator. format.negStyle string -
the value must be one of MinusBlack , Red, ParensBlack, ParensRed format.currency string -
a currency symbol to display format.currencyPrepend boolean - set to true to prepend the
currency symbol js // Currency text field formatting doc.formText('leaf2', 10, 60, 200, 40, {
multiline: true, align: 'right', format: { type: 'number', nDec: 2, sepComma: true, negStyle:
'ParensRed', currency: '$', currencyPrepend: true } }); Field Names Form Annotations are,
by default, added to the root of the PDF document. A PDF form is organized in a name

heirarchy, for example shipping.address.street . Capture this heirarchy either by setting the
name of each form annotation with the full hierarchical name (e.g. shipping.address.street)
or by creating a hierarchy of form fields and form annotations and refering to a form field or
form annotations parent using options.parent. A form field is an invisible node in the PDF
form and is created using the document formField method. A form field must include the
node's name (e.g. shipping) and may include other information such as the default font
that is to be used by all child form annotations. Using the formField method you might
create a shipping field that is added to the root of the document, an address field that
refers to the shipping field as it's parent, and a street Form Annotation that would refer to
the address field as it's parent. Create form fields using the document method: formField(
name, options) - returns a reference to the field -- Example PDF using field hierarchy, three
text fields and a push button -- `javascript doc.font('Helvetica'); // establishes the default
font doc.initForm(); let rootField = doc.formField('rootField'); let child1Field =
doc.formField('child1Field', { parent: rootField }); let child2Field =
doc.formField('child2Field', { parent: rootField }); // Add text form annotation
'rootField.child1Field.leaf1' doc.formText('leaf1', 10, 10, 200, 40, { parent: child1Field,
multiline: true }); // Add text form annotation 'rootField.child1Field.leaf2'
doc.formText('leaf2', 10, 60, 200, 40, { parent: child1Field, multiline: true }); // Add text
form annotation 'rootField.child2Field.leaf1' doc.formText('leaf1', 10, 110, 200, 80, { parent:
child2Field, multiline: true }); // Add push button form annotation 'btn1' var opts = {
backgroundColor: 'yellow', label: 'Test Button' }; doc.formPushButton('btn1', 10, 200, 100,
30, opts); ` The output of this example looks like this. Advanced Form Field Use Forms can
be quite complicated and your needs will likely grow to sometimes need to directly specify
the attributes that will go into the Form Annotation or Field dictionaries. Consult the PDF
Reference and set these attributes in the options object. Any options that are not listed
above will be added directly to the corresponding PDF Object. Font The font used for a Form
Annotation is set using the document.font method. Yes that's the same method as is used
when setting the text font. The font method must be called before initForm and may be
called before formField or any of the form annotation methods. js doc.font('Courier');
doc.formText('myfield', 10, 10, 200, 20); Named JavaScript In support of Form Annotations
that execute JavaScript in PDF, you may use the following document method:
addNamedJavaScript(name, string) Limitations It is recommended that you test your PDF
form documents across all platforms and viewers that you wish to support. Form Field
Appearances Form elements must each have an appearance set using the AP attribute of
the annotation. If this attribute is not set, the form element's value may not be visible.
Because appearances can be complex to generate, Adobe Acrobat has an option to build
these apperances from form values and Form Annotation attributes when a PDF is first
opened. To do this PDFKit always sets the Form dictionary's NeedAppearances attribute to
true. This could mean that the PDF will be dirty upon open, meaning it will need to be
saved. The NeedAppearances flag may not be honored by all PDF viewers. Some form
documents may not need to generate appearances. This may be the case for text Form
Annotations that initially have no value. This is not true for push button widget annotations.
Please test Document JavaScript Many PDF Viewers, aside from Adobe Acrobat Reader, do

not implement document JavaScript. Even Adobe Readers may not implement document
JavaScript where it is not permitted by a device's app store terms of service (e.g. iOS
devices). Radio and Checkboxes Support for radio and checkboxes requires a more
advanced attention to their rendered appearances and are not supported in this initial
forms release. Destinations Anchor may specify a destination by
addNamedDestination(name, ...args), which consists of a page, the location of the display
window on that page, and the zoom factor to use when displaying that page. Examples of
creating anchor: // Insert anchor for current page doc.addNamedDestination('LINK'); // Insert
anchor for current page with only horizontal magnified to fit where vertical top is 100
doc.addNamedDestination('LINK', 'FitH', 100); // Insert anchor to display a portion of the
current page, 1/2 inch in from the top and left and zoomed 50%
doc.addNamedDestination('LINK', 'XYZ', 36, 36, 50); // Insert anchor for this text
doc.text('End of paragraph', { destination: 'ENDP' }); Examples of go to link to anchor: // Go
to annotation doc.goTo(10, 10, 100, 20, 'LINK') // Go to annotation for this text
doc.text('Another goto', 20, 0, { goTo: 'ENDP', underline: true }); Attachments in PDFKit
Embedded Files Embedded files make it possible to embed any external file into a PDF.
Adding an embedded file is as simple as calling the file method and specifying a filepath.
doc.file(path.join(__dirname, 'example.txt')) It is also possible to embed data directly as a
Buffer, ArrayBuffer or base64 encoded string. If you are embedding data, it is recommended
you also specify a filename like this: doc.file(Buffer.from('this will be a text file'), { name:
'example.txt' }) When embedding a data URL, the type option will be set to the data URL's
MIME type automatically: doc.file('data:text/plain;base64,YmFzZTY0IHN0cmluZw==', {
name: 'base64.txt' }) There are a few other options for doc.file: name - specify the
embedded file's name type - specify the embedded file's subtype as a MIME-Type
description - add descriptive text for the embedded file hidden - if true, do not show file in
the list of embedded files creationDate - override the date and time the file was created
modifiedDate - override the date and time the file was last updated If you are attaching a
file from your file system, creationDate and modifiedDate will be set to the source file's
creationDate and modifiedDate. Setting the hidden option prevents this file from showing
up in the pdf viewer's attachment panel. While this may not be very useful for embedded
files, it is absolutely necessary for file annotations, to prevent them from showing up twice
in the attachment panel. File Annotations A file annotation contains a reference to an
embedded file that can be placed anywhere in the document. File annotations show up in
your reader's annotation panel as well as the attachment panel. In order to add a file
annotation, you should first read the chapter on annotations. Like other annotations, you
specify position and size with x, y, width and height, unlike other annotations you must also
specify a file object. The file object may contain the same options as doc.file in the previous
section with the addition of the source file or buffered data in src . Here is an example of
adding a file annotation: const file = { src: path.join(__dirname, 'example.txt'), name:
'example.txt', description: 'file annotation description' } const options = { Name: 'Paperclip'
} doc.fileAnnotation(100, 100, 100, 100, file, options) The annotation's appearance may be
changed by setting the Name option to one of the three predefined icons GraphPush,
Paperclip or Push (default value). Accessibility Accessible PDFs are usable by visually

impaired users who rely on screen readers/text-to�speech engines/vocalisation. The two
main tasks required to create accessible PDFs are marking content and defining the
document's logical structure. These are detailed in the following sections. Some other
simpler tasks are also required. This checklist covers everything that is required to create a
conformant PDF/UA (PDF for Universal Accessibility) document (which is an extension of
Tagged PDF): Pass the option pdfVersion: '1.5' (or a higher version) when creating your
PDFDocument (depending on the features you use, you may only need 1.4; refer to the PDF
reference for details). Pass the option tagged: true when creating your PDFDocument
(technically, this sets the Marked property in the Markings dictionary to true in the PDF).
Provide a Title in the info option, and pass displayTitle: true when creating your
PDFDocument. Specify natural language in the document options and/or logical structure
and/or non�structure marked Span content. Add logical structure with all significant content
included. Include accessibility information (such as alternative text, actual text, etc.) in the
logical structure and/or non-structure marked Span content. Include all spaces which
separate words/sentences/etc. in your marked structure content, even at the ends of lines,
paragraphs, etc.. I.e. don't do doc.text("Hello, world!") but instead do doc.text("Hello, world!
"). Mark all non-structure content as artifacts. As well as creating the logical structure, write
objects to the PDF in the natural "reading order". Do not convey information solely using
visuals (such as colour, contrast or position on the page). No flickering or flashing content.
Marked Content Marked content sequences are foundational to creating accessible PDFs. All
marked content sequences are associated with a registered tag, such as 'Span'. Example of
marking content: // Mark some text as a "Span" doc.markContent('Span'); doc.text('Hello,
world! '); doc.endMarkedContent(); Marked content is automatically ended when a page is
ended, and if a new page is automatically added by text wrapping, marking is automatically
begun again on the new page. Tags to use are listed in a later section. Marked Content
Options When marking content, you can provide options (take care to use correct
capitalisation): type - used for artifact content; may be Pagination (e.g. headers and
footers), Layout (e.g. rules and backgrounds) or Page (cut marks etc.) bbox - bounding box
for artifact content: [left, top, right, bottom] in default coordinates attached - used for
Pagination artifact content, array of one or more strings: Top, Bottom, Left, Right lang -
used for Span content: human language code (e.g. en-AU) which overrides default
document language, and any enclosing structure element language alt - used for Span
content: alternative text for an image or other visual content expanded - used for Span
content: the expanded form of an abbreviation or acronym actual - used for Span content:
the actual text the content represents (e.g. if it is rendered as vector graphics) It is
advisable not to use Span content for specifying alternative text, expanded form, or actual
text, especially if there is a possibility of the content automatically wrapping, which would
result in the text appearing twice. Set these options on an associated structure element
instead. Logical Structure Logical structures defines the reading order of a document, and
can provide alternative text for images and other visual content. To define logical structure,
you need to mark the structure content, keep a reference to it, then incorporate it into a
structure tree. So far, PDFKit only supports marked content in the logical structure, not
annotations, forms, or anything else. Example of marking structure content: // Mark some

text as a paragraph ("P"); the tag should match the intended structure element's type const
myStructContent = doc.markStructureContent('P'); doc.text('Hello, world! ');
doc.endMarkedContent(); Example of the simplest of structure trees: // Add a single
structure element which includes the structure content to the document's structure
doc.addStructure(doc.struct('P', myStructContent)); Tags/element types to use are listed in
a later section. Note that to be conformant to Tagged PDF, all content not part of the logical
structure should be marked as Artifact. Automatic Ending of Structure Content and Artifacts
Structure content does not nest, and is mutually exclusive with artifact content; marking
structure or artifact content will automatically end current marking of structure or artifact
content (and any descendent marking): // Mark multiple paragraphs without needing to
close them doc.markContent('Artifact', { type: "Layout" }); doc.rect(x1, y1, w1, h1); const
myStructContent = doc.markStructureContent('P'); doc.text('Hello, world! ');
doc.markContent('Artifact', { type: "Layout" }); doc.rect(x2, y2, w2, h2); const
myStructContent = doc.markStructureContent('P'); doc.markContent('Span');
doc.text('Bonjour, tout le monde! '); doc.markContent('Artifact', { type: "Layout" });
doc.rect(x3, y3, w3, h3); const myStructContent = doc.markStructureContent('P');
doc.text('Hello again! '); Complex Structure Multiple elements may be added directly to the
document, or to structure elements, and may nest: // Create nested structure elements
const section1 = doc.struct('Sect', [doc.struct('P', [someTextStructureContent,
doc.struct('Link', someLinkStructureContent), moreTextStructureContent])]); const
section2 = doc.struct('Sect', secondSectionStructureContent); // Add them to the
document's structure doc.addStructure(section1).addStructure(section2); Incremental
Construction of Structure Structure can be built incrementally. Elements can optionally be
(recursively) ended once you have finished adding to them, allowing them to be flushed out
as soon as possible: // Begin a new section and add it to the document's structure const
mySection = doc.struct('Sect'); doc.addStructure(mySection); // Create a new paragraph
and add it to the section const myParagraph = doc.struct('P');
mySection.add(myParagraph); // Add content, both to the page, and the paragraph const
myParagraphContent = doc.markStructureContent('P');
myParagraph.add(myParagraphContent); doc.text('Hello, world! '); // End the paragraph,
allowing it to be flushed out, freeing memory myParagraph.end(); Note that if you provide
children when creating a structure element (i.e. providing them to doc.struct() rather than
using structElem.add()) then structElem.end() is called automatically. You therefore cannot
add additional children with structElem.add(), i.e. you cannot mix atomic and incremental
styles for the same structure element. For an element to be flushed out, it must: be ended,
have been added to its parent, and if it has content defined through closures (see next
section), be attached to the document's structure (through its ancestors) When you call
doc.end(), the document's structure is recursively ended, resulting in all elements being
flushed out. If you created elements but forgot to add them to the document's structure,
they will not be flushed, but the PDF stream will wait for them to be flushed before ending,
causing your application to hang. Make sure if you create any elements, you add them to a
parent, so ultimately all elements are attached to the document. It's best to add elements
to their parents as you go. Shortcut for Elements Containing Only Marked Content The

common case where a structure element contains only content marked with a tag matching
the structure element type can be achieved by using a closure:
doc.addStructure(doc.struct('P', () => { doc.text('Hello, world! '); })); This is equivalent to:
const myStruct = doc.struct('P'); doc.addStructure(myStruct); const myStructContent =
doc.markStructureContent('P'); doc.text('Hello, world! '); doc.endMarkedContent();
myStruct.add(myStructContent); myStruct.end(); Note that the content is marked and the
closure is executed if/when the element is attached to the document's structure . This
means that you can do something like this: const myParagraph = doc.struct('P', [() => {
doc.text("Please see ", { continued: true }); }, doc.struct('Link', () => {
doc.text("something", { link: "http://www.example.com/", continued: true }); }), () => {
doc.text(" for details. ", { link: null }); }]); and no content will be added to the page
until/unless something like this is done: doc.addStructure(section1);
section1.add(myParagraph); // Content is added now or alternatively:
section1.add(myParagraph); doc.addStructure(section1); // Content is added now This is
important because otherwise when the Link element is constructed, its content will be
added to the page, and then the list containing the link element will be passed to the
construct the P element, and only during the construction of the P element will the other P
content be added to the page, resulting in page content being out of order. It's best to add
elements to their parents as you go. Structure Element Options When creating a structure
element, you can provide options: title - title of the structure element (e.g. "Chapter 1")
lang - human language code (e.g. en-AU) which overrides default document language alt -
alternative text for an image or other visual content expanded - the expanded form of an
abbreviation or acronym actual - the actual text the content represents (e.g. if it is rendered
as vector graphics) Example of a structure tree with options specified: const titlePage =
doc.struct('Sect', { title: 'Title Page' }, [doc.struct('H', [doc.struct('Span', { expanded:
'Portable Document Format for Universal Accessibility', actual: 'PDF/UA' }, [
pdfUAStructureContent]), doc.struct('Span', { actual: 'in a Nutshell' }, [
inANutshellStructureContent]),]), doc.struct('Figure', { alt: 'photo of a concrete path with
tactile paving' }, [photoStructureContent])]); Automatic Marking and Structure
Construction for Text The text() method accepts a structParent option which you can use to
specify a structure element to add each paragraph to. It will mark each paragraph of
content, create a structure element for it, and then add it to the parent element you
provided. It will use the P type, unless you specify a different type with a structType option.
Example of creating structure automatically with text(): // Create a section, add it to the
document structure, then add paragraphs to it const section = doc.struct('Sect');
doc.addStructure(section); doc.text("Foo. \nBar. ", { structParent: section }); This is
equivalent to: const section = doc.struct('Sect'); doc.addStructure(section);
section.add(doc.struct('P', () => { doc.text("Foo. "); }); section.add(doc.struct('P', () => {
doc.text("Bar. "); }); The list() method also accepts a structParent option. By default, it add
list items (type LI) to the parent, each of which contains a label (type Lbl, which holds the
bullet, number, or letter) and a body (type LBody, which holds the actual item content). You
can override the default types with a structTypes option, which is a list: [itemType,
labelType, bodyType]. You can make any of the types null to omit that part of the structure

(i.e. to add labels and bodies directly to the parent, and/or to collapse the label and body
into a single element). Example of creating structure automatically with list(): // Create a
list, add it to the structure tree, then add items to it const list = doc.struct('List');
someElement.add(list); doc.list(["Foo. ", "Bar. "], { structParent: list }); Tags and Structure
Element Types Here are the tags and structure element types which are defined in Tagged
PDF. You must ensure you give them with the correct capitalisation. Tagged PDF also
supports custom types which map to standard types, but PDFKit does not have support for
this. Non-structure tags: Artifact - used to mark all content not part of the logical structure
ReversedChars - every string of text has characters in reverse order for technical reasons
(due to how fonts work for right-to-left languages); strings may have spaces at the
beginning or end to separate words, but may not have spaces in the middle "Grouping"
elements: Document - whole document; must be used if there are multiple parts or articles
Part - part of a document Art - article Sect - section; may nest Div - generic division
BlockQuote - block quotation Caption - describing a figure or table TOC - table of contents,
may be nested, and may be used for lists of figures, tables, etc. TOCI - table of contents
(leaf) item Index - index (text with accompanying Reference content) NonStruct - non-
structural grouping element (element itself not intended to be exported to other formats
like HTML, but 'transparent' to its content which is processed normally) Private - content
only meaningful to the creator (element and its content not intended to be exported to
other formats like HTML) "Block" elements: H - heading (first element in a section, etc.) H1
to H6 - heading of a particular level intended for use only if nesting sections is not possible
for some reason P - paragraph L - list; should include optional Caption, and list items LI - list
item; should contain Lbl and/or LBody Lbl - label (bullet, number, or "dictionary headword")
LBody - list body (item text, or "dictionary definition"); may have nested lists or other blocks
"Table" elements: Table - table; should either contain TR, or THead, TBody and/or TFoot TR -
table row TH - table heading cell TD - table data cell THead - table header row group TBody
- table body row group; may have more than one per table TFoot - table footer row group
"Inline" elements: Span - generic inline content Quote - inline quotation Note - e.g. footnote;
may have a Lbl (see "block" elements) Reference - content in a document that refers to
other content (e.g. page number in an index) BibEntry - bibliography entry; may have a Lbl
(see "block" elements) Code - code Link - hyperlink; should contain a link annotation Annot -
annotation (other than a link) Ruby - Chinese/Japanese pronunciation/explanation RB - Ruby
base text RT - Ruby annotation text RP - Ruby punctuation Warichu - Japanese/Chinese
longer description WT - Warichu text WP - Warichu punctuation "Illustration" elements
(should have alt and/or actualtext set): Figure - figure Formula - formula Form - form widget
You made it! That's all there is to creating PDF documents in PDFKit. It's really quite simple
to create beautiful multi-page printable documents using Node.js! This guide was generated
from Markdown files using a PDFKit generation script. The examples are actually run to
generate the output shown inline. The script generates both the website and the PDF guide,
and can be found on Github. Check it out if you want to see an example of a slightly more
complicated renderer using a parser for Markdown and a syntax highlighter. If you have any
questions about what you've learned in this guide, please don't hesitate to ask the author or
post an issue on Github. Enjoy!

